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ABSTRACT

Many automated test generation techniques have been proposed
for finding crashes in Android apps. Despite recent advancement in
these approaches, a study shows that Android app developers prefer
reading test cases written in natural language. Meanwhile, there
exist redundancies in bug reports (written in natural language)
across different apps that have not been previously reused. We
propose collaborative bug finding, a novel approach that uses bugs
in other similar apps to discover bugs in the app under test. We
design three settings with varying degrees of interactions between
programmers: (1) bugs from programmers who develop a different
app, (2) bugs from manually searching for bug reports in GitHub
repositories, (3) bugs from a bug recommendation system, Bugine.
Our studies of the first two settings in a software testing course
show that collaborative bug finding helps students who are novice
Android app testers to discover 17 new bugs. As students admit
that searching for relevant bug reports could be time-consuming,
we introduce Bugine, an approach that automatically recommends
relevant GitHub issues for a given app. Bugine uses (1) natural
language processing to find GitHub issues that mention common
UI components shared between the app under test and other apps
in our database, and (2) a ranking algorithm to select GitHub issues
that are of the best quality. Our results show that Bugine is able
to find 34 new bugs. In total, collaborative bug finding helps us
find 51 new bugs, in which eight have been confirmed and 11 have
been fixed by the developers. These results confirm our intuition
that our proposed technique is useful in discovering new bugs for
Android apps.
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1 INTRODUCTION

Smartphones bundled with mobile applications have become indis-
pensable. As mobile users rely heavily on their smartphones for
their daily tasks, the reliability and usability of mobile applications
are essential to ensure a satisfying user experience. According to a
recent survey [1], 56% of respondents have experienced a problem
when using a mobile application and 79% of them will retry an app
once or twice if it fails to meet their expectations. Hence, there
is a rising demand for testing and analysis techniques for mobile
applications. Several automated techniques have been proposed
for analysis [6, 11, 21, 28, 53, 73], testing [7, 8, 17, 48, 49, 56] and
repair [63] of mobile apps. However, these automated techniques
have not been widely adopted due to several reasons. Firstly, these
techniques mainly focus on finding crashes and fail to find other
types of bugs (e.g., UI-related bugs). Secondly, prior studies revealed
that most app developers prefer manual testing compared to auto-
mated testing for finding bugs in their apps due to reasons such as
lack of knowledge of testing tools, and learning curve of available
tools [41, 44]. Thirdly, according to one of these studies [44], app
developers prefer reading automatically generated tests written in
natural language. However, existing automated testing techniques
could only generate tests expressed in low-level events (e.g., using
ADB commands) that are difficult for developers to understand.

For large software projects like Mozilla and Eclipse, there exist
up to thousands of bug reports written in natural language. Hence,
prior approaches on duplicate bug reports detection exploit the sim-
ilarities between bug reports for bug localization [61, 70, 74]. In fact,
many similar bug reports exist not only within the same project, but
also across different software projects, especially for Android apps.
Figure 1 shows two real world examples from ForkHub (a GitHub
client)1 where a developer who developed PocketHub and ForkHub
found similar bugs in ForkHub by referring to issues in PocketHub.
Meanwhile, Table 1 shows an extreme case where there exists a
one-to-one correspondence in the GitHub issues between two apps
of different categories (CameraColorPicker and Gnucash). How-
ever, there is little study on how to utilize the redundancies in bug
reports across different Android apps for discovering new bugs.

Motivated by the testing needs of app developers and the redun-
dancies in bug reports across different Android apps, we propose
collaborative bug finding, a novel form of testing that exploits the
similarities between Android apps for crafting test scenarios spe-
cialized for a given app under test. For Android apps, a test scenario
includes (1) steps to reproduce, (2) test data (e.g., an image for im-
age processing app), and (3) the expected behavior. The underlying

1https://github.com/jonan/ForkHub/issues/5, https://github.com/jonan/ForkHub/
issues/6
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Figure 1: App developers who developed PocketHub and ForkHub

found similar bugs across two apps

Table 1: Example where there exists one-to-one correspondence for

issues in CameraColorPicker (driver) and Gnucash (selected app)

Titles of issues in CameraColorPicker Titles of issues in Gnucash
How do I get left top color. When an account is edited, its color is lost.
publish to F-Droid Publishing on F-Droid
Make gradlew executable Make gradlew executable

assumption of our approach is that ifAppA andAppB shared similar
UI components and a developer A has found a bug BuдA on AppA,
then it is more likely to find a bug similar to BuдA for AppB . To
facilitate collaborative bug finding, we adapt the driver-navigator
metaphor of pair programming by emulating the role of a compe-

tent pair programmer via developers of other similar applications.
Specifically, we have designed three settings with varying degrees

of interactions between the driver and the navigators. In the coder-
vs-coders setting, the driver (developerAwho developsAppA) drives
the bug finding session by sharing his or her bug report RA, while
the navigators (other developers for AppB , ..., AppZ ) read the bug
report and think about whether the test scenario in RA could be
applied toAppB , ...,AppZ . In the coder-vs-manual-issues setting, the
driver manually searches for bug reports from a different appAppB
(navigator) and constructs a test scenario that is specialized for
AppA. In the coder-vs-auto-issues setting, the driver provides AppA
as a query and our issue recommendation system, Bugine will
automatically identify relevant GitHub issues by selecting issues
from another similar app for AppA.

We introduce the concept of collaborative bug finding in a soft-
ware testing course with 29 seniors (fourth year Computer Science
students) where they cooperated through a group project that spans
over ten weeks.We gathered both the opinions from students on the
effectiveness of collaborative bug finding and the number of defects
discovered. Both of these measurements show positive outcomes on
the potential benefits of collaborative bug finding in an educational
setting. Moreover, in some bug reports (e.g., in Figure 1), we also
found evidence that Android app developers have been using the
similarities between different apps for testing, which indicates the
opportunities of employing collaborative bug finding beyond the
classroom setting.

Overall, our contributions can be summarized as follows:

New Concept. We introduce the concept of collaborative bug find-
ing, to the best of our knowledge, the first technique that exploits
the fact that similar bugs appear even in different apps to craft
specialized test scenarios for testing Android apps.
Improved teaching of software testing. Several techniques have
been proposed in enhancing software testing education [18, 24, 25,
39, 43]. To the best of our knowledge, we present the first study

Figure 2: Four bugs (circled in red) found through collaborative bug

finding across four apps.

Figure 3: GitHub issue RA
reported by student SA for

Omni-Notes.

Figure 4: GitHub issue reported by

student SB for New-Pipe.

that leverages collaborative bug finding in GitHub classroom for
teaching software testing course. Based on students’ feedback of
using GitHub classroom, we have reported one important feature
to the developers of GitHub classroom and this feature has recently
been planned for future release [60]. Moreover, our evaluation
has demonstrated the effectiveness of our approach in improving
teaching by helping students to find new bugs in Android apps.
New Recommendation System. We propose a new bug recom-
mendation system, Bugine for reducing the effort required for
collaborative bug finding. Given an Android app A, Bugine will
automatically select relevant bug reports which can be used as
tests for A.
Evaluation. We evaluate the effectiveness of collaborative bug
finding in three settings in which different degrees of interaction
between programmers are involved. In the coder-vs-coders and
coder-vs-manual-issues setting, collaborative bug finding helps
students discover 17 new bugs when evaluated in 20 apps. Mean-
while, Bugine is able to recommend 34 new bugs for the five
evaluated apps. In total, collaborative bug finding helps in the
discovery of 51 new bugs, in which eight have been confirmed
and 11 have been fixed by the developers. All the bugs found via
Bugine is publicly available at https://bugine.github.io/.
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2 MOTIVATING EXAMPLE

We demonstrate the workflow of the coder-vs-coders setting of
collaborative bug finding using four example apps and their bugs.
Figure 2 shows the screenshots of the four open-source apps re-
ported by four different students. The first app Omni-Notes is a
note-taking app (Category: Productivity), while the second app
New-Pipe is a media player app (Category: Multi-Media). Mean-
while, the third app Minimal To Do allows users to manage their
to-do lists (Category: Productivity), whereas the fourth app CoCoin
is an accounting app (Category: Finance). The process of collabora-
tive bug finding proceeds as follows:
• Student SA (i.e., the driver) found a bug in Omni-Notes that
causes the counter representing the number of notes in the newly
updated łtestž category (circled in red) to be outdated when
adding or removing a note. The user needs to restart the app for
the increment to take place. Student SA reported the GitHub issue
RA (as shown in Figure 3), and this issue has been confirmed and
fixed by the developers 2.
• Student SB read RA and tried to derive a similar test scenario
from RA for New-Pipe app. Figure 4 shows the bug report filed
by SB

3. Comparing Figure 3 and Figure 4, we infer that adapting
the test scenario requires (1) creative thinking of the łsteps to
reproducež in the context of New-Pipe, while two information
can be reused from RA: (2) the expected behavior of the app (i.e.,
the view should be updated), and (3) the test behavior after the
incorrect view occurs (i.e., the view is updated correctly upon
restart). With all the required information in mind, SB found that
although a message with łImportedž is shown when SB tried to
import subscriptions from YouTube, the content of the imported
subscriptions are not displayed immediately, and could only be
shown after an app restart. For this bug report RB , the developer
has recently added a pull request for fixing this bug.
• Student SC tried to adapt the test scenario from RA to Minimal
To Do. In the adapted test scenario 4, the time reminder for a
to-do was not updated immediately when the specified time for
the to-do has passed, making the outdated time appeared in the
screen. Similar to RA, the view is updated only after restarting
the app.
• Student SD read RA and realized that when the amount for lunch
(the red icon) is modified from 45 to 30, the total displayed at
the top of the screen (ł65ž) was not updated accordingly despite
showing a message łUpdate successfullyž5.
Although Figure 2 shows that all the four apps are relatively

different and most of them are from different categories (except
for Omni-Notes and Minimal To Do that belong to the same Pro-
ductivity category), our example shows that similar bugs that are
related to outdated view may exist across different apps. Apart
from the four example bugs shown in Figure 2, another student
SE who also selected New-Pipe for testing had discovered similar
problems when trying to import a previously exported subscription
file (as shown at the end of Figure 4). Meanwhile, student SA also
encountered similar problem when modifying the tag of a note
in Omni-Notes. In total, collaborative bug finding has helped in

2https://github.com/federicoiosue/Omni-Notes/issues/625
3https://github.com/TeamNewPipe/NewPipe/issues/1919
4https://github.com/avjinder/Minimal-Todo/issues/113
5https://github.com/Nightonke/CoCoin/issues/47

Figure 5: Workflow for the coder-vs-coders setting

Figure 6: Workflow for the coder-vs-manual-issues setting

identifying five instances of similar bugs across four apps. By shar-
ing a new GitHub issue RA that student SA found through manual
testing, four students are inspired by RA which helps them to derive
specialized test scenarios for four new bugs in three different apps,
respectively. It is worthwhile to mention that all these students are
novice Android app testers who were given the task of testing apps
that they have not used on a regular basis. This example illustrates
the effectiveness of collaborative bug finding in promoting creative

thinking and the discovery of new bugs.
Another interesting observation is that the problem of displaying

outdated view when the values of a GUI component are modified
seems to be a prevalent problem in Android apps. Our manual
analysis of the fixes issued by the Omni-Notes developer and the
New-Pipe developer indicates that this problem occurs due to in-
appropriate handling of asynchronous events, and could be solved
by adding either observable sequences or background service to
ensure that the view is being updated in real-time. As the fixes
for the bugs in Omni-Notes and New-Pipe share similar high-level
patterns but differ in the design choices (using either observable se-
quences or background service), this shows the potential of extract-
ing bug-fix patterns from common issues for automated program
repair [52, 65, 66]. More importantly, the fact that similar bugs could
occur across four different apps and yet developers are willing to
fix them promptly indicates the importance and the prevalence of

these bugs in Android apps.

3 METHODOLOGY

We use the Research through Design (RtD) [27, 79] approach to
design several settings to model different degrees of interactions
between programmers. These settings aim to emulate different
scenarios in GitHub where collaborative bug finding could be used.
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3.1 GitHub and GitHub classroom

GitHub 6 is a social coding platform built on top of the git ver-
sion control system and supports pull-based software development.
GitHub classroom [36] is an open-source service launched byGitHub
that allows instructors to use GitHub for teaching computer science
courses. It includes several features (e.g., importing class roster, on-
line discussions, and automatic creation of software repositories
for individual and group assignments). Internally, it uses an organi-
zation to store course contents and student assignments. GitHub
team discussion7 is a feature in GitHub organization that supports
communications among members within the same organization or
the same team (a subset of members in an organization). We design
our approach based on GitHub and GitHub classroom.

3.2 The coder-vs-coders setting

In the coder-vs-coders setting, we assume that both the driver and
the navigators are programmers who belong to the same organi-
zation but each of them may develop a different app. A recent
study of open-source Android apps in GitHub shows that the ma-
jor contributors for an Android app also owned around five other
repositories [14]. This suggests that our assumption (developers
of different apps may belong to the same organization as other
developers) generally holds.

Figure 5 shows the overall workflow for the coder-vs-coders
setting. The collaborative bug finding process starts with a pro-
grammer A (the driver) posting a GitHub issue i for AppA in the
team discussion page (Step 1 in Figure 5). After reading i , another
programmer within the same organization (the navigator) could
read the GitHub issue and think about whether i is applicable for
the app Appnaviдator (in which Appnaviдator , AppA) (Step 2
in Figure 5). This step requires the navigator to think creatively
about whether there exist some łsimilaritiesž between AppA and
Appnaviдator that may allow i to be reproducible onAppnaviдator
(we leave it up to the navigator to define his or her own notion of
similarities). If the navigator has successfully reproduced the issue
in i , then he or she will post the new issue j to the team discussion
(Step 3 in Figure 5). We call this a pair sharing with i being the
originally shared issue and j being the derived issue. The process
repeats when another member of the organization posts a new
GitHub issue that is different from i and j. In this case, the greater
the number of pair sharings for an issue, the greater the potential of
discovering a general bug that is applicable to most Android apps
(e.g., the outdated view bug in Section 2).

3.3 The coder-vs-manual-issues setting

In the coder-vs-coders setting, programmers need to wait passively
for a new bug report. To improve the efficiency of collaborative
bug finding, we design the coder-vs-manual-issues setting where
programmers could get a one-on-one navigator for helping them
find bugs in their apps. In this setting, the driver is a programmer
who would like to perform collaborative bug finding but does not
belong to any organization, whereas the navigators are open-source
Android apps with a list of GitHub issues. This setting aims to

6https://github.com/
7https://github.blog/2017-11-20-introducing-team-discussions/

emulate the scenario where a novice app programmer would like
to get advice for testing his or her newly created Android app.

Figure 6 shows the overall workflow for the coder-vs-manual-
issues setting. Assume that a programmer A (driver) want to find
bugs that may affect the app AppA that he or she developed. The
process starts withA selecting randomly two apps: (1) an appAppB
that belongs to the same category as AppA and (2) another app
AppC that belongs to a different category than AppA. Selecting a
same category app allows A to find specific bugs that may occur
in apps that perform similar tasks, whereas selecting a different
category app allowsA to find general bugs that may occur across all
Android apps. After the app selection,A chooses five GitHub issues
(more issues could be selected if time allows) from AppB and AppC
respectively. Then, A will think about whether the test scenarios
in the selected issues could be reproduced in AppA. This step is
similar to Step 2 in Figure 5 where creative thinking is required.

4 DOES COLLABORATIVE BUG FINDING
HELPS TO DISCOVER NEW BUGS?

Before evaluating the general applicability of collaborative bug
finding for testing Android apps, we first study the general fea-
sibility of collaborative bug finding as an approach that helps in
constructing test cases for Android apps through different degrees
of interactions. Our goal is to evaluate whether reading the bug
reports written by others about another app (another app plays
the role of a competent pair programmer) could lead to the cre-
ative thinking of similar testing scenario for the app under test and
eventually lead to the discovery of new bugs for the app under test.
Experiment setup for the coder-vs-coders setting. In a soft-
ware testing course (CS409) with 29 students in Southern University
of Science and Technology (SUSTech), we start the study by asking
each student to form a team of 3ś4. Each student is required to
choose an app for testing from a list of open-source Android apps8.
Note that although each student needs to test a different app within
a team, we hope that the team setting will encourage collaboration
among team members. We allow students to select their preferred
app while providing some guidelines:

Ease of use: The project can be compiled successfully without
errors, and can be executed in a device. This is compulsory.
Existing Tests: The project contains some test cases for validating
the correctness of the app. This is compulsory.
Popularity: The app contains relatively large number of stars in
GitHub or many downloads in Google Play.
Actively Maintained: There are recent commits to the projects.
Likelihood of finding new bugs: Projects withmany bug reports
may indicate that it is easier to find bugs in these projects but less
likely to find new bugs (not duplicates of existing bugs).
Size: The project contains many Java classes that can be tested.

These guidelines aim to help students in judging the suitability of
each app for testing. To ensure diversity of the selected apps, we also
impose the rule that only a maximum of three teams could select the

same app and all apps selected by each member within a team must

be distinct. This selection results in 20 selected apps. For the coder-
vs-coders setting, we encourage students to participate by sharing

8https://github.com/pcqpcq/open-source-android-apps/blob/master/README.md
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Figure 7: The total number of bugs found throughout the semester

via coder-vs-manual-issues setting of collaborative bug finding

the bugs that they discovered in the organization discussion page
(all students belong to the same organization). To encourage active
participation, each student will receive 5 bonus points for each new
bug reported to the app developer. At the end of the course, we
manually analyzed all the issues posted in the discussion page, and
attempt to answer two questions:

RQ1a: Howmany pair sharings exist in the discussion page through-
out the entire course of the semester?

RQ1b: What are the types of bugs found through pair sharing?

Results for coder-vs-coders setting. Overall, 14 students have
shared 29 GitHub issues for 11 open-source Android apps (the se-
lected apps could be the same for some students). Among these 29
issues, we only observe five pair sharings. Meanwhile, the remain-
ing bugs shared in the discussion page are discovered via other
testing methods, which will be discussed in the subsequent para-
graph. Interestingly, all the five pair sharings are related to the
outdated view bugs described in Section 2.

Answer to RQ1: There are five pair sharings in the discussion
page. All of these bugs lead to outdated view.

Experiment setup for the coder-vs-manual-issues setting. To
increase the number of discovered bugs via collaborative bug find-
ing, we posted an assignment via GitHub Classroom that required
students to write tests for their selected apps using two strategies:
(Method 1) covering code changes for recent commit (we call this
strategy regression-inspired), and (Method 2) the coder-vs-manual-
issues setting of collaborative bug finding (refer to Section 3.3 more
details). We compare these two strategies because both techniques
rely on another similar app for constructing test cases (i.e., code
changes relies on a different version of the same app, whereas
collaborative bug finding uses a similar app as driver). For the
regression-inspired strategy, students are required to write two test
cases to verify the correctness of the changed code for the most
recent commit. Note that we ask students to write two test cases so
that they could design the tests to check both the normal behavior
and the exceptional behavior. Using the coder-vs-manual-issues
strategy, students are required to select five issues from an app
within the same category, and five issues from a different category
app (the category of an app is defined in this link 9). For each se-
lected issue i , students need to manually check whether they could

9https://github.com/pcqpcq/open-source-android-apps

reproduce similar bugs in their selected apps based on i and write a
new derived issue (issue that are inspired by i). To collect students’
feedback for these two strategies, we asked students to answer the
question: łWhich method do you think is more effective in finding

new bugs? Why? Explain the reason in terms of efficiency (time taken)

and effectiveness (likelihood of finding new bugs)ž. Our goal is to
answer the following questions:

RQ2a What is the percentage of relevant GitHub issues when
referring to the issues derived from same category app versus
those from different category app?

RQ2b Compared to other testing approaches, how many bugs
could collaborative bug finding discover? What are the types
of bugs found?

RQ2c Considering students’ feedback, what are the effectiveness
and efficiency of collaborative bug finding versus construct-
ing tests based on code changes?

RQ2a: Same category app versus different category app. We
investigate whether the app of the same category or the app of a
different category is more suitable as the driver app for collabora-
tive bug finding. In total, there are 27 student submissions for this
assignment (i.e., two students did not submit). These 27 students
have selected 260 GitHub issues (131 issues from same category
app, and 129 issues from different category app). Apart from se-
lecting bug-related GitHub issues, we realized that students also
select GitHub issues that include feature requests, build problems,
questions, and documentation requests. For each issue, we classify
its type and measure whether it is:

Definition 4.1. Relevant Given Appquery , an issue i is relevant
if similar functionality and steps to reproduce mentioned in i exist
in Appquery and does not lead to unexpected behavior.

Definition 4.2. Reproducible Given Appquery , an issue i is re-
producible if similar functionality and steps to reproducementioned
in i exist in Appquery and lead to unexpected behavior.

Table 2 shows the results of our manual inspection. The łType of
Issuesž column in Table 2 represents the type of issues selected by
students. Meanwhile, the łRelevancež column measures whether
an issue is reproducible or relevant. The łSame Categoryž column
and the łDiff. Categoryž column denotes the percentage of issues
that are relevant to the app of the same category and the percent-
age of issues that are relevant to the app of a different category,
respectively. Note that students could choose from apps that belong
to 17 categories listed at 10. For each type of issue, % reproducible
+ % relevant + % irrelevant (not shown in Table 2) = 100%. Over-
all, 21.18% of bug-related issues selected from same category apps
could be reproduced in the selected apps, whereas only 11.96% of
bug-related issues selected from apps of different category could
be reproduced. Although selecting bug-related GitHub issues from
same category app is more likely to be reproducible, our results
show that other types of issues (including features, build, question
and documentation) from apps of different category could contain

relevant information that may inspire the further improvement of

other software artifacts. Interestingly, students identified 10 derived
issues that have been previously reported. In nine of these issues,

10https://github.com/pcqpcq/open-source-android-apps/blob/master/README.md
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Table 2: The issue relevance comparison between app of same cate-

gory and app of different category

Types of Issues Relevance Same Category Diff. Category

bug
reproducible 21.18% 11.96%
relevant 32.94% 32.61%

feature
reproducible 33.33% 21.74%
relevant 16.67% 21.74%

build
reproducible 20.00% 66.67%
relevant 33.33% 0.00%

question
reproducible 20.00% 0.00%
relevant 20.00% 0.00%

documentation
reproducible 50.00% 80.00%
relevant 0.00% 0.00%

we realized that the issues for the driver app and the navigator
app are almost identical, which confirms with our assumption that
similar bugs could occur across different apps. Meanwhile, in one of
these derived issues of the AnExplorer app, a user mentioned that
łThis problem exists in AnExplorer but not Amaze Explorer, however

AnExplorer is required due to its other capabilities.ž11. This example
provides concrete evidence of the potential usage of collaborative bug
finding beyond the educational setting.

Answer toRQ2a:Among the selected bug-related issues, 21.18%
of issues from same category app are reproducible, whereas only
11.96% of issues from different category apps are reproducible.
However, selecting non-bug-related issues from different cate-
gory apps may provide insights for future improvement of other
software artifacts (e.g., build scripts, and documentation).

RQ2b: Number of bugs found and their types. Throughout the
course, students also learn about writing tests based on several test-
ing criteria (e.g., graph coverage based on manually drawn Event
Flow Graphs and Input Domain Modeling (IDM) [9]). Meanwhile,
Monkey12, an automated tool for stress testing Android app, is the
only automated testing tool taught in the course. Figure 8 shows the
number of new bugs discovered for all the testing approaches. In
general, it may be difficult to keep track of the exact testing technique

used to find a bug. However, this is not the case for collaborative bug

finding because for each new bug found, we could refer to its original

GitHub issue. Overall, collaborative bug finding helps students in
discovering 17 out of 29 new bugs. We also analyze how the ac-
cumulative total number of reported bugs in the discussion page
evolves over time, including the key dates where we distributed
the assignment and the deadline of the assignment. Figure 7 shows
our analysis results. We can observe from Figure 7 that the total
number of reported bugs increases significantly after distributing
the assignment for collaborative bug finding. Specifically, Mann-
Whitney U Test shows that the difference between the number of
bugs found using our approach and the number bugs found us-
ing other approaches is statistically significant with p < 0.05. On
the other hand, similar to prior study of the testing preference of
Android developers [44], students use manual testing for finding
five new bugs. Compared to manual testing approaches, Monkey
only helps students in finding two new bugs. To understand the

11https://github.com/1hakr/AnExplorer/issues/98
12https://developer.android.com/studio/test/monkey
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Figure 9: Types of bugs

found through collabora-

tive bug finding.

reasons behind the ineffectiveness of Monkey in the discovery of
new crashes, we read the final reports written by students that sum-
marized their learning experience and realized that students found
three more bugs using Monkey but did not report them because (1)
one crash becomes irreproducible when testing manually; and (2)
most of the discovered crashes have been previously reported.

To understand the types of bugs that the first two settings help to
discover, we carefully read all the 17 GitHub issues discovered via
our approach. Specifically, we look for common keywords among
all the GitHub issues. Figure 9 shows the results of our manual
analysis. The results show that the update problem described in
Section 2 is the most common problem (29%) among all the newly
discovered bugs. Another common problem (18%) is that when
certain names are used for creating a new file or a new folder, the
app will exhibit unexpected behavior. For example, when the user
of Amaze File Manager (file manager app) tried to create a folder
with the same name as the current folder, it fails but the renaming
should have been successful. In 12% of the reported bugs discovered
through collaborative bug finding, when using some apps with
different modes (e.g., non-silent mode and Pop-Up mode), the app
behaves incorrectly. In 12% of the reported bugs, when app user
tries to change the language either via the options in the app or
open a file written in a non-English language, the displayed text is
incorrect. For 29% bugs discovered via collaborative bug finding,
they are non-crash related and specific to the selected apps.

Answer to RQ2b: The coder-vs-manual-issues setting of collab-
orative bug finding helps students in the discovery of 12 new
bugs. The improvement in the total number of bugs found is
statistically significant. The bugs discovered via collaborative
bug finding include: (1) prevalent problems affecting many apps
(29% of them are related to the outdated view, 18% of them are
related to the usage of specific names for file or folder creation,
12% of them are related to opening the app in specific mode, 12%
are related to incorrect behavior with the change of language),
and (2) specific problems that affect the selected apps (29%).

RQ2c: Comparison with regression-inspired approach. We
manually read through the 25 answers for the question that com-
pares (Method 1) regression-inspired approach, and (Method 2)
collaborative bug finding. Figure 10 shows the students’ feedback
when comparing these two strategies. Overall, there are 16 students
who prefer collaborative bug finding for the discovery of new bugs,
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Figure 10: Students’ feedback on the comparison between collabo-

rative bug finding and regression-inspired approach

whereas 9 students prefer the regression-inspired approach, and
two students did not answer the question. For example, one student
acknowledged the benefits of collaborative bug finding: łBecause
many functions in the app in the same category are similar even

totally same ... and others’ report will also inspire the mind to find

bugs which I never considered.ž. Meanwhile, another student com-
mented on the shortcoming of the coder-vs-manual-issues setting:
łmethod 2 takes more time to review different apps and search useful

issues, while method 1 only needs to focus on small code changes.

But method 2 is more likely to find new bugsž. In total, 15 students
share similar concerns on the efficiency of collaborative bug finding.
Based on general feedback that searching for relevant issues could
be time-consuming, we design the coder-vs-auto-issues setting.

Answer to RQ2c: 16 out of 25 students prefer collaborative
bug finding over regression-inspired approach. However, 15
students admitted that searching for relevant issues could be
time-consuming.

5 ISSUE RECOMMENDATION ALGORITHM

Based on the students’ feedback on the weakness of the coder-
vs-manual-issues setting, we propose Bugine, an approach that
automatically selects relevant GitHub issues for the app under test
AppA so that developers for AppA could focus on the łcreative
thinkingž step to derive specialized test scenarios. Bugine’s key
steps include: (S1) using natural language processing to find similar
apps by representing the common UI components of Appquery and
Appdatabase as app description files, (S2) automatically construct-
ing queries from (S1) to select relevant issues, and (S3) ranking
them based on their qualities.

Figure 11 shows the overall workflow of our issue recommenda-
tion system, Bugine. Our approach first builds a database of GitHub
issues obtained from open-source Android apps and pre-processes
these issues to extract their metadata. For each app in our database,
we extract its app description file for future comparison. Given
an app under test Appquery , Bugine extracts its UI components to
obtain its app description file. Then, we use the similarities between
the app description file for Appquery and the app description files
for all the apps in our database to search for apps that are similar to
Appquery . This similarity is given as input to our ranking function,
which prioritizes the GitHub issues in our database. Finally, Bugine
outputs a ranked list of relevant GitHub issues for Appquery .

Figure 11:Workflow for our GitHub issues recommendation system

5.1 Building a database of GitHub issues.

To build our database, we first obtain a set of open-source Android
apps by crawling GitHub. Our crawler selects an app A based on
(1) the number of stars in GitHub, (2) the number of reviews and
the number of downloads in Google Play, (3) the number of GitHub
issues, and (4) its category. For each selected app, we extract all its
issues and collected the metadata of each issue (e.g., title, author,
number of user comments, labels, issue state, body, commit SHA,
etc.). We also downloaded its source code from its master branch
for subsequent steps. This results in a total of 23980 issues from
34 different applications that provide 10 different functionalities
(e.g., cloud client, file explorer, web browser, notes, picture gallery,
GitHub client, etc.).

5.2 Data Pre-Processing

As all the GitHub issues in our database are written in natural
language, we use Natural Language Processing (NLP) techniques
to pre-process them before storing them into our database. We also
perform similar pre-processing for all the XML files. Specifically,
we perform the following steps:

Tokenization: We convert each issue into lists of words (tokens).
Stopwords removal: Stopwords are commonly used words which
do not have complete lexical meaning (e.g. łthež, łisž, łthatž). We
use the Python NLTK library [3] to remove stopwords.
Convention unification: Considering the naming convention of
different Android UI components, Bugine uses Humps [4], a
python library that converts strings between snake case, camel
case and pascal case, to unify the different naming conventions
used in variable naming. We replace each underscore with white
space and separate each composite word.
Stemming & lemmatization Stemming reduces inflected words
to their base form, whereas lemmatization groups together the
inflected forms of a word so that they can be analyzed as a single
item.We use stemming and lemmatization for reducing inflectional
forms of the parsed tokens.

After the data pre-processing, we convert the corpus into token
streams, which will be used in the subsequent step.
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Table 3: UI description patterns

Component Description Example Extracted Names

Resource name Resource name android:id="@+id/my_btn" my_btn
View name The name for the type of UI component. <Button android:id="@+id/my_btn" /> Button
XML file name Layout name main_layout.xml main_layout

5.3 Extracting app description files.

The user interfaces of Android apps are commonly defined in XML
layout files [2]. These files contain the definitions for the interface
elements and their structures. Android resources are the additional
files and static content used in the app code (e.g., bitmaps) 13. Re-
sources can be referenced via their resource IDs. The automatically
generated file R.java contains all resources and their IDs.

In this step, Bugine identifies and parses all the XML files within
the folder src/main/res to generate app description files. We also
discard element styles (e.g., colors and fonts) which are not essen-
tial to apps and retain only the important attributes that describe
app behaviors. For each pair of apps (AppA, AppB ), we compare
and match their app description files. This description file is used
for (1) classifying the category of the app (we assume that if the
sets of UI components in AppA and AppB are similar, then AppA
and AppB are of the same category), and (2) generating candidates
search keywords for identifying the relevant GitHub issues. Then,
Bugine transforms these app descriptions into query phrases by
summarizing the common parts in the two app description files.
Table 3 shows the naming information in the XML files that we
used to extract UI components that are common between two apps.
This information helps us to convert for each XML file, each view
and each resource in Appquery to the query of the form:

XML file name ∧ View Name ∧ Resource name

Similarity Measures.We use two commonly used similarity mea-
sures for computing text similarities. To measure the similarities
between the query and GitHub issue titles, we use Overlap Coef-

ficient that computes the overlap between two finite sets X and
Y [42]. Namely, Overlap Coefficient is defined as:

overlap(X ,Y ) =
|X ∩ Y |

min( |X |, |Y |)
(1)

If X is the subset of Y or vice versa, then overlap(X ,Y ) is equal
to 1. It ranges between [0, 1]. We choose Overlap Coefficient over
the Jaccard Similarity [37] and Dice Similarity [22] because (1) the
search query is usually shorter than the corpus in the database, and
(2) it is sensitive to the size of the two sets.

To measure the similarities between the query and the text bod-
ies of GitHub issues, we use the n-gram similarity because (1) it has
been widely used in modeling natural language [62, 69], (2) Overlap
Coefficient does not consider context (i.e., the surrounding words)
but the text bodies usually contain detailed information and formal
structural sentences. For the same reasons, we also use n-gram
for calculating the UI components similarities. Specifically, we use
the standard character-based n-gram from the Python NGram li-
brary [5] with the default value of n=3. To find items that are similar
to a query q, the NGram library will split the query into n-grams,

13https://developer.android.com/guide/topics/resources/accessing-resources.html

Table 4: Factors used in ranking search results

Factor Description

Issue length Word count of issue body (int)
Issue status Closed or opened (binary)
Ref commit SHA Commit SHA referenced by issue (binary)
Issue reply num The number of replies that an issue received (int)
Hit_all Find all search keywords in the corpus (binary)
Hit_overlap Overlap Coefficient between search keywords and corpus (float)
Hit_hot_words Word count of descriptive hot words like reproduce, defect (int)

collect all items sharing at least one n-gramwithq, and compute the
similarity score based on the ratio of shared to unshared n-grams
between strings.

We calculate the similarity between two corpora using:

дsim (C1,C2,W ) =

n∑

i=1

h(c1i , c2i ) ×wi (2)

In this equation, h(c1, c2) denotes the function used for compar-
ing text similarities (e.g., Overlap Coefficient or n-gram),C1 andC2
are the pairs of corpora, c1i and c2i are the i-th part of the corpora,
andW assigns a weight to each term.

5.4 Ranking Relevant GitHub Issues.

The goal of this step is to produce a ranked list of relevant GitHub
issues for Appquery . In previous steps, we obtain similar apps for
Appquery . We use each query phrase extracted from the app de-
scription files to search for related issues and ordered the results
by their importance, relevance and reproducibility. We use several
factors to rank the relevant issues. A key factor that determines
the quality of a GitHub issue i is how well the test scenario has
been described in i . An empirical study on Apache, Mozilla and
Eclipse [80] shows that developers expect a good bug report to
include steps to reproduce, observed and expected behavior, and stack
traces. The study shows that a detailed bug report can help devel-
opers in narrowing down the search space for bugs and save time
on fixing bugs. Based on the results of this study, we design the
metrics used to evaluate the quality of each issue.

Table 4 shows the seven metrics that we used for ranking GitHub
issues. Particularly, the Issue length measures how detailed an
issue is (we assume that longer issue contains more information),
whereas the Issue status depicts its importance (we assume that
closed issues to be more important). The Ref commit SHA metric
checks if the problem mentioned in issues has been fixed (as evi-
denced by the presence of a commit SHA). We include Issue reply

num based on the assumption that issues with greater number of
replies are more important. We use both Hit_all and Hit_overlap
for finding the string similarities because we believe that if all the
search keywords appear in the corpus (Hit_all), then the text should
be given additional weights. The Hit_hot_words factor assigns a
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higher score to GitHub issues with words that represent the char-
acteristics of a good bug report [80].

Given an issue e , a component C that is similar to the search
keywords, we calculate the ranking score S (e, C⃗,W ):

S (e, C⃗,W ) =

n∑

i=1

fi (e, C⃗ ) ×wi (3)

where fi (e, C⃗ ) denotes the value of factor fi on issue e and search
keywordsC ; andwi denotes the weight for factor fi . We perform a
grid search to tune the weight for each factor.

6 EVALUATION

To the best of our knowledge, Bugine is the first approach that
ranks GitHub issues for Android apps. The approach closest to
Bugine is the advanced search feature in GitHub that can be used
to narrow down the search for issues related to Android apps and
filter the issue status, the number of comments, the date of the
last update, and the label of each issue. However, there is no direct
method to (1) filter issues from Android apps, (2) search for the UI
components for an app nor (3) select the category of an app. Hence,
we could not find any suitable baseline approaches.

We perform evaluation on the effectiveness of Bugine to address
the following research questions:

RQ3a What is the overall performance of Bugine in recommend-
ing relevant GitHub issues?

RQ3b How many real bugs can Bugine find?

6.1 Experimental Setup

We evaluate Bugine on five open-source Android apps. Table 5 lists
information about the evaluated apps. The ł#Downloadž and the
łRatingž column denote the number of downloads and the rating
in Google Play, respectively. We select these apps for evaluation
because they are diverse in terms of app category, sizes (5ś31K lines
of codes), popularity (60ś378 stars in GitHub), and the number of
issues. Although zapp is not able for download in GooglePlay, we
choose this app because it was the most recently updated app in
GitHub with frequent releases, which indicates that it has been
actively maintained by the developers.

We evaluate the overall performance of Bugine using two mea-
sures used in prior evaluations of recommendation systems [75, 78]:

Prec@k measures the retrieval precision over the topk documents
in the ranked list:

Prec@k =
# o f relevant docs in top k

k
(4)

We measure the precision at k = 5, 10, 20, 50.
Mean Reciprocal Rank (MRR) For each query q, the MRR mea-
sures the position f irstq of the first relevant document in the
ranked list [68]:

MRR =
1

|Q |

|Q |∑

q=1

1

firstq
(5)

The higher the MRR value, the better the ranking performance.

Rater A Rater B Rater A Rater B Rater A Rater B Rater A Rater B Rater A Rater B

Camera-Roll PocketHub
Simple File

Manager
zapp Simpletask

Prec@5 0.4 0.4 0.4 0.4 0.8 0.4 0.2 0.4 0.2 0.2

Prec@10 0.2 0.2 0.5 0.5 0.7 0.5 0.5 0.3 0.1 0.2

Prec@20 0.3 0.4 0.45 0.6 0.55 0.65 0.3 0.25 0.15 0.2

Prec@50 0.34 0.42 0.56 0.56 0.44 0.5 0.28 0.28 0.24 0.24

0

0.2

0.4

0.6

0.8

Precision@k

Figure 12: The Prec@k results for Bugine

Camera-Roll PocketHub
Simple File

Manager
zapp Simpletask

Rater A 0.48 0.75 0.58 0.39 0.46

Rater B 0.39 0.67 0.53 0.34 0.43

0.00

0.20

0.40

0.60

0.80

MRR

Figure 13: The Mean Reciprocal Rank (MRR) results for Bugine

For RQ3a and RQ3b, we use the same definitions of relevance as

RQ2a (Def. 4.1 and Def. 4.2). For all the reproducible issues discov-
ered, we reported them to the corresponding app developers.

All experiments were conducted on a machine with Intel (R)
Core (TM) i7-8700 CPU @3.2 GHz and 32 GB RAM.

6.2 RQ3a: Ranking Performance of Bugine.

Figure 12 shows the Prec@k results for Bugine, whereas Figure 13
shows the MRR results for Bugine. We include the computed values
for the two raters (Rater A and Rater B) in both results for better
comparison. The Prec@10 results range from 0.1 to 0.7, which
means that among the top 10 issues recommended by Bugine,
there is at least one relevant issue. Meanwhile, the MRR values
for Bugine range from 0.34 to 0.75, which means that the ranking
for the first relevant document ranges between 3rd (0.34) and 1st
(0.75). Compared to the previous recommendation system that ranks
source files for bug reports [75], we think that the MRR values are
relatively high as their MRR values only range from 0.2 to 0.55. This
indicates that Bugine could recommend relevant issues for most
of the evaluated apps (especially for PocketHub and Simple File

Manager as their Prec@5 and MRR values are relatively high).
We observe that the Prec@k and theMRR results for SimpleTask

are relatively low. This could be due to the fact that it is an app with
limited number of features. Although it has the greatest number
of GitHub issues among all evaluated apps (821), we realized that
most of its GitHub issues are not bug-related (e.g., feature requests)
with only 20% of these issues are marked as łbugž. Another inter-
esting observation is that the two reviewers (Rater A and Rater B)
have different Prec@k values for Simple File Manager. We think
that this difference is due to the fact that crafting specialized test
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Table 5: Statistics and Evaluation Results of the Android apps used

App Name Category KLOC #Downloads Rating Version No.
#GitHub #GitHub Issue # Bugs Found

Stars (closed) (new,old)

Camera-Roll Gallery 26.00 100,000+ 4.2 1.0.6 420 227(133) (11, 0)
PocketHub GitHub client 31.35 10,000+ 3.3 0.5.1 9429 644(526) (12, 2)
Simple File Manager Explorer 5.84 50,000+ 4.5 6.3.4 378 189(130) (6, 2)
Zapp Broadcast 8.41 N.A. N.A. 3.2.0 60 151(137) (2, 7)
Simpletask Reminder 24.80 10,000+ 4.7 10.3.0 349 821(583) (3, 2)

scenarios require creative thinking which is different across peo-
ple. Nevertheless, the average inter-rater agreement is 0.76, which
indicates substantial agreement between the two reviewers.

Answer to RQ3a: The Prec@k and the MRR value show that
Bugine could recommend relevant issues for all evaluated apps.

6.3 RQ3b: Number of bugs that Bugine finds.

Given an Bugine’s issue, we evaluate RQ3b by manually replicating
the issue to check if it is reproducible in the app under test and we

consider that Bugine discovers a bug if the issue is reproducible in the

app under test. The ł# Bugs Foundž column in Table 5 shows the
number of bugs discovered by Bugine. In total, we found 34 new
bugs and 13 old bugs in all the five evaluated apps. Compared to the
coder-vs-coders and the coder-vs-manual-issues setting where 29
students find 17 new bugs when evaluated on 20 apps, Bugine could
discover more bugs despite being evaluated only on five apps. This
shows that the effectiveness of Bugine in recommending relevant
issues, which leads to the discovery of new bugs.

Among all the evaluated apps, we are able to find the greatest
number of new bugs in PocketHub. This result matches with the
high Prec@k (Figure 12) and the MRR results (Figure 13). Moreover,
the fact that PocketHub has the lowest rating among all evaluated
apps indicates that many app users encountered bugs when using
the app and the likelihood of finding new bugs is high.

Answer to RQ3b: Bugine recommends 34 new bugs across five
evaluated apps.

7 THREATS TO VALIDITY

External. Our evaluation results may not generalize beyond An-
droid apps, the educational setting and testing approaches that we
evaluated. To mitigate this threat, we used a large number of open-
source Android apps. Furthermore, we also provide guidelines for
students in their selection of the open-source apps to ensure the
diversity of subjects in terms of popularity, ease of use, contains
various test cases and a large number of reported GitHub issues. All
participants of our study are fourth year CS students, and they are
graded based on the number of new bugs discovered, which may
lead to issues according to prior studies [15, 34]. We countered this
threat by using bonus points to increase student participation [26]
and reward the same bonus points to students regardless of the test-
ing approaches used in finding the new bugs. To counter the threat
of the general applicability of our approach beyond the classroom
setting, we found some examples where developers of Android apps
referred to other related apps when filing a new bug report.

Internal. We managed all the assignments via GitHub Classroom,
and wrote scripts to automate the download of GitHub issues from
the discussion page. During themanual inspection and classification
of each bug, we had two undergraduate students (one of them being
the author of the paper and another non-author) inspect the results
independently to avoid the influence on the results. To avoid bias
during the computation of the rank results for Bugine, we shuffled
the rank results before presenting them to the two reviewers.
Construct.We used the number of newly discovered bugs to com-
pare different testing approaches but other aspects (e.g., time taken
to find bugs and the coverage of the generated tests) could be af-
fected by using different testing approaches. We mitigate this threat
by including and manually analyzing students’ feedback on the
potential benefits of collaborative bug finding.

8 RELATED WORK

Collaborative Programming. Pair programming is a form of col-
laborative programming where two people are working together
on the same programming task [54]. Previous evaluations of pair
programming show that the interaction between two program-
mers is effective in producing high quality software [13, 51, 71].
However, prior studies revealed that pair programming may not
be cost-efficient [12, 19, 54]. Meanwhile, prior research focuses
on the cooperative aspects of testing [46, 47, 72]. In collaborative
testing for component-based systems, previous studies show that
when several component-based systems use common components,
testers of such systems can reduce testing costs and improve test
effectiveness by sharing test artifacts [46, 47]. However, the pro-
posed solutions rely on their own data sharing infrastructure for
sharing test data across multiple component-based systems, which
may be impractical. Similar to our approach that uses interactions
for testing, the Timeline Tool leverages user interactions for fail-
ure reproduction [58]. Different from all these approaches, our
approach uses different degrees of interactions between the driver
and navigators for constructing test scenarios for Android apps.
Crowdsourcing. Priorwork showpromising results in using crowd-
sourcing [35] (a concept where various activities are outsourced
to a group of people through online platforms) for performing
several testing activities including mutation testing [59], usability
testing [31, 45], GUI testing [23], and for education projects [16].
In the context of Android apps, Polariz combines crowdsourcing
and search-based testing to enhance the activity coverage of gen-
erated tests [50]. Meanwhile, MoTiF uses crowdsourcing for col-
lecting execution traces from users to reproduce context-sensitive
crashes [30]. These approaches recruit crowd workers for testing
several designated mobile applications. Although human-written
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tests (collected from the crowd) have shown to be complementary
to automatically generated tests, collaborative bug finding differs
from these crowdsourcing-based approaches in that: (1) there is
no direct interaction between crowd workers while writing tests
in crowdsourcing, and (2) the crowdsourced tests are limited to
particular apps and may not generalize to other untested apps.
GitHub. Prior research on GitHub focuses on the characteristics of
the software repositories hosted onGitHub [20, 38], its transparency
and collaboration [67], and its pull-based software development
model [32, 33]. Several studies use GitHub as a collaborative learn-
ing platform for education [40, 76]. We present the first study that
uses GitHub Classroom for teaching software testing.
Recommendation systems for Software Engineering. Several
recommendation systems exist for performing software engineering
tasks [10, 55, 57, 75, 78]. These systems aim to assist with fault
localization based on ranking bug reports [55, 75, 78]. Different
from these approaches, Bugine recommends GitHub issues for
finding bugs in Android apps.

9 CONCLUSION

We propose collaborative bug finding, an approach that promotes
the discovery of new bugs via different degrees of interactions
between driver and navigators. In the coder-vs-coders setting, pro-
grammers within an organization communicate by sharing their
newly reported GitHub issues. In the coder-vs-manual-issues set-
ting, a developer forAppA selects several issues from same category
app and from different category app to derive specialized test sce-
narios for AppA. Meanwhile, in the coder-vs-auto-issues setting,
we introduce Bugine, an approach that automatically recommends
relevant GitHub issues for the app under test. Our evaluation of
all settings of collaborative bug finding shows that it helps in the
discovery of new bugs. Specifically, it helps in finding five bugs via
pair sharing in the coder-vs-coders setting. In the coder-vs-manual-
issues setting, students reported 12 new bugs. Meanwhile, Bugine
helps the discovery of 34 new bugs. The relatively high number
of newly found bugs confirms that collaborative bug finding is a
promising approach in testing Android apps.

We believe that this work opens several opportunities for future
research:
Reusing bug reports fromdifferent apps. The concept of collab-
orative bug finding builds upon the idea of finding bugs by referring
to bug reports of other similar apps. Although we have only applied
this concept in the context of Android apps, it may be generalized
to reusing bug reports for other types of applications with common
characteristics (e.g., machine-learning applications).
Novel test generation approach. Instead of test input generation,
we reformulate the test generation problem as bug report recommen-

dation problem. As bug reports are written in natural language,
our approach may help in relieving the burden of developers in
learning a new android testing framework or APIs. Meanwhile,
our evaluation shows that the types of bugs found via collabora-
tive bug finding are mostly non-crash related, whereas existing
automated testing approaches from Android apps focus on finding
crashes. Moreover, prior testing techniques [29, 64] that extract
specifications from code comments in natural language indicate
potential benefits in improving automated testing with test oracles

obtained from bug reports. Hence, we believe that our approach is
complementary to existing automated Android testing approaches.
We leave as future work the investigation of whether collabora-
tive bug finding can be combined with automated Android testing
approaches to increase the number of bugs found.
Fully automatic collaborative testing. Automating collabora-
tive bug finding involves: (1) test transfer which requires mapping
all relevant UI components in the original issues to the derived
issues (the app descriptions files in Bugine could be used), and (2)
translating report in natural language to reproducible test scripts.
Both of these steps are active research topics with promising initial
results [77]. Collaborative bug finding recommends GitHub issues
which are important prerequisite for these steps, and could spark
future research in these topics.
Teaching software testing via GitHub Classroom.We present
the first study that uses GitHub Classroom for teaching software
testing. We have observed many benefits of using GitHub Class-
room for distributing students’ assignments and encouraging team
collaborations, which are essential especially in the coder-vs-coders
setting of collaborative bug finding. Moreover, as we have demon-
strated the effectiveness of collaborative bug finding in helping
students to find bugs in Android apps, we believe that the idea
of using another similar application as a competitive łpair testerž
could be potentially useful in other settings. In the future, it is
worthwhile to investigate how to leverage GitHub and collabora-
tive bug finding for teaching other software engineering courses or
principles (e.g., test-driven development).
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